
Towards Automated Defect Analysis using
Execution Traces of Scenario-based Models

Joel Greenyer1, Daniel Gritzner1, David Harel2 and Assaf Marron2

1Leibniz Universität Hannover, Hannover, Germany
2The Weizmann Institute of Science, Rehovot, Israel

Keywords: Software Engineering, System Engineering, Scenario-based Programming, Behavioral Programming, Ab-
straction, Debugging, Program Repair, Execution Trace, Event Log

Abstract: Scenario-based specification approaches offer system engineering advantages with their intuitiveness, exe-
cutability, and amenability to formal verification and synthesis. However, many engineering tasks such as
debugging or maintenance are still far from trivial even when using such specifications. Specifically, it is hard
to find out why a complex system behaves as it does, or how it would behave under certain conditions. Here,
we present work in progress towards the (semi-)automatic analysis of event traces emanating from simulation
runs and actual executions. These traces may be large, yet developers are often interested only in specific
properties thereof, like is any specification property violated? are particular properties demonstrated? is there
a smaller sub-sequence of events that violates or demonstrates the same properties? which trace properties
are common to multiple traces and which are unique? etc. Our approach includes automatic techniques for
discovering and distilling relevant properties of traces, analyzing properties of sets of traces, using (sets of) ex-
ecution traces for understanding specified and actual system behavior and problems therein, planning system
enhancement and repair, and more. Our work leverages and extends existing work on trace summarization,
formal methods for model analysis, specification mining from execution traces, and others, in the context of
scenario-based specifications. A key guiding perspective for this research is that interesting properties of a
trace often can be associated with one or very few concise scenarios, depicting desired or forbidden behavior,
which are already in the specification, or should be added to it.

1 INTRODUCTION

Execution logs of complex systems often contain
thousands if not millions of events. Depending on
the task at hand, say, debugging an apparent problem,
studying existing behavior in preparing for new de-
velopments, or making a management decision, ex-
tracting from such logs, or traces, just the relevant
items can be a difficult and error-prone task. Much
work has been done on trace summarization, mining,
and more, towards simplifying and accelerating tasks
in software and system engineering (SE) that require,
or that can take advantage of, execution traces. In
this paper we extend this work by observing that the
properties that one finds relevant in a given trace, may
change depending on the task one is working on, be it
helping a customer, debugging a problem, designing a
new feature, validation and verification, detecting cy-
ber intrusions, or, demonstrating the capabilities and
limitations of a system to new audiences. More gen-
erally, we propose to create a systematic arsenal of al-
gorithms, tools, and development methodologies for

using event traces in SE.

Consider, for example, the case of a model of a
city-wide road system, with many autonomous and
human-driven cars, and with automated traffic lights
and other controls. Then, during a model-based sim-
ulation a human observer looking at a video of the
system behavior notes several near-collision situa-
tions. The system’s event trace, will likely contain
a large number of events, including of course all car
movements, traffic light changes, raw and event-based
sensor data coming in from cameras, range finders
and other instruments, as well as high level abstract
ones such as cars reaching their intended destina-
tions, cars having negotiated busy intersections suc-
cessfully, and, sudden queues having been handled
successfully. However, in analyzing each of the near-
collision situations, especially for the first time, one
has to filter out the vast majority of the events in the
trace. Moreover, a human may be able to describe
the relevant portion of the video, or the trace, which
may still be quite large, with very few terms and im-
plicit abstractions, such as: “car C1 stopped abruptly

because bicycle B1 was quite fast, and was about to
cross in front of C1 without slowing down; and, car C2
driving behind C1 was barely able to brake in time and
nearly collided with C1; further, not only did C2 not
keep a safe distance at that moment, but it has been
driving aggressively for some time now; this is inter-
esting because car C2 seems to be autonomous...”.

Our context is the scenario-based programming
approach (SBP), in which models and even final sys-
tems can be developed from components representing
different aspects of desired and undesired system be-
havior. Here, our goal is to assist engineers working
on development, debugging or maintenance of SBP
models by automating the handling of simulation and
execution traces, specifically, the extraction, and sub-
sequent use of succinct sub-traces and relevant ab-
stractions thereof.

In Section 2 we first present a small running exam-
ple to be used as context for the rest of the paper; in
Section 3 we introduce scenario-based modeling and
programming; in Section 4 we discuss existing rel-
evant research and tools; in Section 5 we elaborate
on the desired capabilities of the proposed tools and
methods and, via a few examples and preliminary re-
sults, show their application in Section 6; finally, in
Section 7 we conclude with a discussion of the results
and of the next steps in this research.

2 A RUNNING EXAMPLE

As a running example we use an advanced driver-
assistance system using automated car-to-x commu-
nication to replace classic traffic control mechanisms
such as traffic lights, towards safer and more efficient
traffic flow. Fig. 1 shows an example situation in such
a system as well as a scenario that would appear in
a scenario-based specification or model of that sys-
tem. Roadworks block one lane of a two-lane road.
Cars approach on either lane and need to communi-
cate with the obstacle’s controller in order to know
what signal (either Go or Stop) to show to their driver
on their dashboards. An example scenario from the
system’s specification could be that: (1) when a car’s
sensors register an obstacle coming up ahead (2) the
car’s driver must be shown a Go or a Stop signal (3)
before the car actually reaches the obstacle.

Even experienced engineers usually need many it-
erations until a specification is feature-complete and
defect-free. Understanding the behavior induced by
a specification, including an intuitive scenario-based
one, is difficult. Simple mistakes, e.g., forgetting to
specify the assumption that drivers obey the signals
on the dashboard, can lead to formal methods report-

approaching
obstacle on narrow

passage lane
obstacle control

obstacle control

1

2

approaching an obstacle
on the blocked lane

show stop
or go

3

before
obstacle is
reached

Scenario “Dashboard of the car approaching on
the blocked lane shows STOP or GO”

approaching
obstacle on
blocked lane

Figure 1: Car-to-X example overview

ing that violations, e.g., car collisions, are still possi-
ble despite the expected outcome being different.

3 SCENARIO-BASED MODELING

Scenario-based Modeling (and Programming), also
termed behavioral programming, offers an intuitive
approach for writing formal specifications. Short sce-
narios specify sequences of events that involve mul-
tiple objects and that define how objects/components
may, must, or must not behave. A collection of these
scenarios is a specification which, through the inter-
play of the contained scenarios, defines the overall
behavior of an entire system. Visual and textual for-
malisms and languages for writing scenarios include
Live Sequence Charts (LSCs) (Damm and Harel,
2001; Harel and Marelly, 2003), the Scenario Model-
ing Language (SML) (Greenyer et al., 2015; Greenyer
et al., 2016; Gritzner and Greenyer, 2017), and be-
havioral programming in general-purpose procedural
languages like C++ or Java (Harel et al., 2012). Fig. 2
shows an LSC of the scenario depicted in Fig. 1.

Key to the scenario-based approach is that execu-
tion of the specification can be done intuitively using
play-out, namely concurrent execution of all scenar-
ios, while complying with the constraints and possi-
bilities defined by the entire specification and yielding
cohesive system behavior. Another execution method
is by synthesizing a composite automaton that reflects
the desired behavior of the system under all environ-
ment behaviors; in fact, this synthesis can be seen
as creating a strategy that guides event selection dur-
ing play-out. Yet another approach is execution with
lookahead, termed smart play-out, where the event se-

:Sensor :Car

approachingObstacle

showGo

:Dashboard

alt

showStop

obstacleReached

Figure 2: LSC1: The dashboard of car approaching the
obstacle must display either “go” or “stop” before the car
reaches the obstacle.

:Sensor :Car

approachingObstacle
register

:ObstacleCtrl

alt

disallowPassage

allowPassage

:Dashboard

showGo

showStop

Figure 3: LSC2: A car approaching an obstacle must first
register and then wait for a go or stop signal from its dash-
board.

lection is subject to run-time assessment of all possi-
ble upcoming execution paths, to some limited depth
or horizon.

Scenarios consist of events, representing system
or environment actions. Scenarios define a partial or-
der of events and modalities encoding what events
may, must, or must not occur in each system state. An
event may be requested, waited for, or blocked. Dur-
ing play-out, at each state, an event that is requested
by some scenario and is not blocked by any scenario is
selected for triggering. All scenarios either requesting
or waiting for this event are notified and can change
their state and optionally change their declarations of
requested, blocked, and waited-for events.

Playing-out the scenarios in Figures 2 and 3, after
the event approachingObstacle both LSCs are active,
but the dashboard events showGo and showStop are
blocked due to the order enforced by LSC2. Thus,
register will be executed next. Depending on the ob-
stacle controller’s reply, the car will then update its
dashboard appropriately. If a car is able to reach the
obstacle before the dashboard shows either Go or Stop
the specification is violated.

The amenability of SBP specifications to incre-
mental refinement is accompanied by their often be-
ing under-specified and non-deterministic: depending
on the specification, multiple events may be candi-
dates in a given state some of which may be undesir-
able or even lead to violations. The opposite, not all
desirable events are enabled in a given state, may also
be true. These situations are indicators for missing
features or defects and are vital for engineers to no-
tice and to understand their cause. However, finding
and reasoning about such situations is often difficult,
especially in large systems.

4 RELATED WORK

Below we give brief examples of the kind of existing
research that can be applied ad-hoc in the use of exe-
cution traces in the desired SE activities. In Section 5
we explain how our contribution aims to extend these
capabilities.

Acting upon emergent properties. Much of the
development process, and in particular in agile, incre-
mental methodologies, revolve around observing de-
sired and undesired properties in an existing model,
and refining the specification accordingly. Return-
ing to the example in the city-wide traffic automation
in the introduction, clearly the human intuition that
not only collisions are violations, but near-collisions
should be reported and analyzed should be manifested
as part of the specification. External sensors, as well
as programmed analysis of known and predicted car
movements can be used to alert about such risky con-
ditions. The specification should then be enhanced
with scenarios that forbid such events from occur-
ring. At run time, these will thus be automatically
avoided where possible, and when they nevertheless
occur, a violation will be reported. The detection of
near-collisions in general traces (depending on ve-
locities and locations) can be specified by engineers
and regulators, or can be automatically inferred using
machine learning techniques. In (Harel et al., 2016)
the authors present an automated approach for detect-
ing emergent properties in sets of execution traces of
scenario-based models, and allowing the programmer
to determine if they are desired (perhaps so that they
should be formally proven), or undesired, in which
case the specification should be repaired (manually or
automatically).

Trace summarization and analysis. A large va-
riety of techniques for summarizing and abstracting
execution traces, especially logs of method calls, has
been researched. E.g., in (Hamou-Lhadj and Leth-
bridge, 2006) the authors present a technique to iden-
tify low importance utility method calls by a fan-
in/fan-out metric. In (Braun et al., 2015) execution
traces are used to automatically generate system doc-
umentation via use case maps. The authors describe
eight algorithms (some emerging from prior works on
the topic) for assigning relevance or importance of
methods calls. These algorithms look at call patterns,
method size, etc. In other papers, such as (Noda et al.,
2017), filtering of events is based on pre-designated or
inferred importance of the events themselves or of the
objects involved.

While the structured data of a trace can be pro-
cessed using many classical techniques, including
storing in databases and subjecting the information

to database queries, another approach (Bertero et al.,
2017), treats the log data as free text and applies natu-
ral language processing techniques to summarize the
raw data and distill relevant properties thereof.

Causality analysis. In the present context of SBP
we relate to causality, especially that of undesired
events, as the sequence of events preceding the unde-
sired one, where each one could occur only after one
of several explicitly-specified events have occurred
(triggered either by the system or the environment).
This chain of events can be readily examined in a
trace in which the states of all scenarios is known in
addition to the identity of the events that occurred.
Automated tools for problem detection (and repair)
analyze traces that violate the specification or cause
a crash. The tools then attempt to detect the unex-
pected environment event, or the undesired system
decision that are the root cause for the violation, and
the sequence of events leading from that root cause to
the observed failure. The traces containing the prob-
lem may emanate from, e.g., execution failures (in
the field or during testing) (Weimer et al., 2010), and
from counterexamples generated by formal verifica-
tion (Clarke et al., 2003). In incremental SBP devel-
opment, when an added specification scenario reflect-
ing a valid user requirement, causes the specification
to become non-realizable, the engineers then search
for the unrealizable core of the specification. In this
context the new scenario can be viewed both as part
of the specification and as test run that violates it.

5 PROPOSED METHOD

Below we discuss in detail key elements of a proposed
method for working with execution traces in the de-
velopment and verification of scenario-based models.
The method is outlined in Figure 4.

The methodology is to contain the following tool
capabilities and human-controlled steps:

5.1 State-graph Generation and
Analysis

Our approach assumes that the formal specification
is such that one can automatically generate from it
a composite state graph. The graph can be compre-
hensive and cover the entire behavior of the system,
or, when violations are found during the generation
of the state graph, a partial one can be used. Most
commonly the graph will be created by a BFS or DFS
play-out of all scenarios in the specification, explor-
ing all possible event selections in each composite
state. When a violation or a deadlock occurs during

the play-out, the state is marked as bad, or violating.
When a cycle is detected, that branch of the search is
abandoned. If, in addition, during that cycle there is
at least one scenario that requests an event that must
occur, and that event does not occur during the cycle,
a safety violation is indicated in the state entering the
cycle.

The goal at this stage is limited to finding at least
one failure which the environment could force on the
system. The findings of this step will be the input to
the subsequent steps, whose goal is to pinpoint and
understand the problem towards manual repair by a
human engineer (for automated repair of scenario-
based programs see, e.g.(Harel et al., 2014). Once
such a problem is repaired or bypassed, the process
can repeat, starting again with formal analysis.

In a variation on the formal methods approach for
obtaining failed executions, one can identify failures
by creating a collection of traces using multiple ran-
dom (possibly parameterized) runs, in which unde-
sired emergent properties are observed automatically
(see, e.g. (Harel et al., 2016)), or by a human.

5.2 Generating Sets of Failing Traces

Developers commonly work with one trace at a time,
reflecting one way to reach the problem state. The
methods we propose enhance this kind of work, and
also augment it with tools for working with sets of
traces. This adds features that are common across
multiple failing traces and behaviors that are unique to
certain failing traces to the analysis. Naturally, many
failing execution traces come from failed test runs and
from problem reports. To these we suggest to add the
following. Once a bad system state is identified as de-
scribed in the formal analysis step, do not suffice with
a single counterexample run that violates the speci-
fication or manifests some desired behavior. Instead
collect multiple such paths in the model’s state graph.

Depending on the nature of the portion of the state
graph leading to the bad state, it may be possible to
generate all bad execution traces (this is the case in
our preliminary results). Alternatively, the number of
traces can be reduced systematically using heuristics,
such as,

• Partial order reduction: One specifies sets of
events the order of which the engineer believes
will not affect their understanding of the problem.

• Event filtering: Eliminate from the trace events
that are deemed irrelevant. E.g., environment
events that are listed and logged but do not af-
fect the outcome. Some of these can be detected
automatically, based on the logic of the scenarios

compute histogram of common
events (common pairs, common

triplets, etc.) [4,5]

compute intersection of all traces
[4, 5]

compute complement of each
trace w.r.t to intersection [4, 5]

investigate violated scenario [5]
decide on which violation to

investigate further

collect traces [3]

filter traces by additional
properties or apply
transformation [4]

update specification

is defect
understood?

yes
no

group traces by violated scenario
and violating event [4, 5]

(1) Specification

T1: {S1, S6, S7, S8}
T2: {S1, S2, S4, S3, S5, S6, S7, S8}
T3: {S2, S4, S9, S1, S3, S5, S6, S7, S8}
. . .

(3) Trace Generation

(5) Specification
Insights

(4) Trace Filtering
and Set Processing

S1

S2 S3

S4 S5

S9

S6

S7

S8

(2) Model-checking

Figure 4: Overview over our proposed method (left-hand side) and example of its systematic application to fix a single defect
(right-hand side). The numbers in parenthesis in the example refer to the steps of the overview they represent. In particular
steps 4 and 5 are applied iteratively.

involved. Or, one may filter events based on the
scenarios that requested them.

• Random trace selection: Create the traces using
random sampling of the possible branches in the
state graph.

5.3 Enhancing the Traces

Whether in the development lab or in the field, we
propose that classical event traces be augmented. In
our experiments, we enhanced the classical trace of
state labels and transition events with an extensive
snapshot including:

• a list of active scenarios (ideally, this would in-
clude their respective local states)

• the enabled events (metaphorically, the ‘roads not
chosen’, at any given state), and,

• selected objects (e.g., cars) and their states (i.e.,
property values).

While such richly-labeled traces can become un-
wieldy in large systems, we observe and propose that
extensive logging can be a game-changer in SE in
general, regarding the ability of a system to be adap-
tive in real time to changes in the environment and
to the results of its own behavior (see also (Marron,
2017)). Hence, developing fast automated offline and
run-time techniques for compressing and filtering ex-
tensive traces would be an important enabler not only

for problem detection, as in the present research, but
for other purposes as well.

5.4 Ad-hoc Tool Validation

Whenever one relies on a tool to diagnose problem
(especially in the case of a new tool, or a first time use
by a novice user) there is a need to confirm, time and
again, that the tool does not miss important problems,
and does not generate false alarms, as may happen
due to incorrect application of the tool, major errors
in the original specification (e.g., a logically bad as-
sertion that makes all runs into good ones), or bugs in
the tool itself.

While SBP offers advantages in incremental de-
velopment, our preliminary experiments show that it
is also advantageous in doing the opposite: incremen-
tal removal of features, or isolated insertion of well-
specified undesired behaviors. These can then be used
to make sure that the tool indeed works as expected.

In the car-to-x SBP model described in Section 2
we have experimentally modified (or have removed
altogether) individual specification scenarios (both in-
dividually and several together), and checked whether
the proposed techniques can help identify the root
cause of problems. We propose that when analyzing
the root cause of a particular behavior (e.g., a hard-to-
solve, hard-to-recreate customer-reported problem),
we also modify the specification intentionally to gen-
erate similar external symptoms, and keep enhancing

our tools until they are able to automatically detect
the new known (synthetic) root cause. Then, we can
more safely apply the same tools to the traces from
the customer problem at hand.

5.5 A Rich Trace-processing API

In our experiments we externalized a rich and grow-
ing library of filtering and validation functions to end-
users and to higher-level scripts. This enables the
easy creation and modification of chains of trace-
processing functions suited to the task at hand. Of-
ten, engineers gain additional insights while closely
examining a defect, thus they need to be able to eas-
ily incorporate these new insights into the trace analy-
sis, both via ad-hoc queries regarding a problem being
studies and via automating future trace-set analysis.

The trace-processing tools should also allow en-
gineers to readily incorporate any heuristics they de-
velop, as a method to be readily accessible in all fu-
ture analyses, for the entire community.

For example, our proof-of-concept APIs include,
among others:

• generating all traces induced by a model or spec-
ification that exhibit interesting properties, such
as:

– traces which lead from one particular state to
another particular state (our experiments are a
special case of this: the traces lead from the
initial state of the system to a violating state),

– traces that visit a particular state
– traces that have certain length, or
– traces during which a certain scenario is active

Such APIs enable engineers to describe the case-
specific properties that the selected traces should
have, e.g., only traces which lead to a collision of
two cars, and to collect traces for any interesting
observed behavior, even one which does not yet
violate the specification.

• filtering a given sets of traces based on the same
properties and conditions which can also be used
for collecting traces in the first place. This fea-
ture enables engineers to quickly modify the set
of traces they work with offline without the need
to to run full system simulations.

• computing the intersection of traces Given that all
traces in the entire set fail in the same or similar
way, this may help pinpoint the elements that are
essential to the failure.

• compute the complements of such sets (intersec-
tions), in search for properties that are unique
to individual traces or to particular (sub)sets of

traces. By contrast to the previous element, if
analyzing commonalities does not help pinpoint-
ing the problem, perhaps analyzing the way by
which each trace is different from all others (or
many others) may provide the desired insights
(Tolstoy’s Anna Karenina opening sentence “All
happy families are alike; every unhappy family is
unhappy in its own way.” may explain some of the
rationale for this approach, though in our case all
traces in the set are failed ones).

• retrieving or filtering sets of traces according to
properties of the trace itself. A key property which
we found useful is the scenario (or scenarios)
being violated, and the identity of the violating
event. Other properties can include order and cor-
relation of events or properties of individual trace
entries.

• quantitative analysis (e.g., producing histograms)
of trace properties (within a set of traces) and of
entry properties (within a trace or set of traces).
This can be helpful for identifying properties that
may not occur in all traces but may still occur in
many traces and point towards the cause of a prob-
lem.

• trace transformation, especially according to
specification properties. Traces may contain su-
perfluous information which the engineer may
want to remove, e.g., in our car-2-x example, in-
formation about a third and fourth car when inves-
tigating the collision of two cars, or removing the
most frequent or most infrequent events in prepa-
ration for quantitative analysis or for anomaly de-
tection.

• specification manipulation API. When narrowing
down a problem, it is often nexessary to modify
the original specification, such as adding simpli-
fying assumption, removing irrelevant scenarios,
etc. One may also mark certain ‘bad’ states as
’good’ in order to bypass certain problems and
allow otherwise hard-to-obtain traces to proceed
past that point for further analysis. On the one
hand, the scenario-based approach simplifies this
kind of analysis, allowing the engineers to test a
variety of combination of scenarios, adding and
removing them to create different specification
configuration, in a way that is much easier than
is commonly possible with ordinary procedural
code, using, say, special test scaffolding, method-
call stubs and mock objects. On the other hand,
managing manual modification, even when done
in a well-controlled source/version management
system would be risky, especially as it would be
combined by the actual incremental repair. Hence

a specification-control system with allowance of
temporary addition and removal of scenario is
desired. Such an API can be seen as a partial
manifestation of the concept of reactive specifi-
cation (Marron, 2017), where the specification it-
self is a reactive system in its own right, adapting,
in this particular case, to changes in the require-
ments, as opposed to changes in the runtime envi-
ronment.

The right-hand side of Fig. 4 illustrates a system-
atic process how an engineer could use the methodol-
ogy and the proposed API to find and fix a defect in a
specification. All steps in blue boxes with black bor-
ders are steps directly supported by our proposed API
whereas all other steps require manual, creative ef-
fort by a human engineer. First, the engineers collect
all traces from the state graph induced by a scenario-
based specification that exhibit some undesirable be-
havior, e.g., all simple paths leading from the initial
state to a state in which any safety violation occurs.
As there may be multiple defects in the specification,
they then group these traces by violated scenario and
violating event (i.e., the last event in each path). After
choosing a group to investigate next, based, e.g., on
severity of the symptoms) they take a closer look at
the violated scenario to find out whether this scenario
itself may be wrong. If, as is often the case, the vio-
lation is only the symptom of a defect, with the actual
cause being somewhere else in the specification, the
engineers enter an iterative process in order to gain
understanding of the actual cause of the defect. In
each iteration they filter and transform the traces from
the group being investigated, based on insights on the
defect’s cause they have already gained so far. For ex-
ample, irrelevant events such as ones representing the
movement of a far-away car when investigating a col-
lision that does not involve it all. Additionally, they
filter and query the trace (using the above API), and
modify the original specification in various ways to
gain additional information and insight.

6 PRELIMINARY RESULTS

6.1 The Specification

In this section we describe an experiment we con-
ducted to develop and exercise the proposed method-
ology. We also describe additional reflections and in-
sights gained in the process, which have methodolog-
ical implications for software development and asso-
ciated tools, that are applicable to a broader context,
beyond debugging with sets of traces.

In the experiment, we created an SML specifica-
tion (Greenyer et al., 2015; Greenyer et al., 2016;
Gritzner and Greenyer, 2017) of the example from
Section 2. This specification defined the behavior of
an obstacle controller which tells approaching cars
when they must wait and when they may enter the
single available lane, so that cars approaching from
opposite directions can pass the obstacle without col-
liding with each other.

The specification contained three conceptual
kinds, or categories, of scenarios, each kind model-
ing a different aspect of the system, or of the design
process. A similar distinction is, of course, applicable
in other contexts as well, but the scenario-based ap-
proach allows tying it to executable parts of the code.
The categories are:

(A) Assumptions about the environment’s behavior.
E.g., in our case, how the cars and drivers behave,
the layout of the road, etc., which are the envi-
ronment in which the obstacle controller system
exists and behaves.

(B) Rules guiding the behavior of the system. E.g.,
in our case, what the obstacle controller must or
must not do following certain events or when cer-
tain conditions hold.

(C) Requirements that the final behavior of the obsta-
cle controller must fulfill given its environment.
E.g., in our case, that collisions are not allowed.
This reflects the purpose of the system and overall
constraints not covered by the first two categories.

Note: The general problem in formal program syn-
thesis is to produce category (B) specifications (in
the form of an automaton, a procedural program or
a scenario-based program) given only category (A)
and category (C) specifications. Further the bound-
ary between categories (B) and (C) is not crisply de-
fined, and keeps moving with the development of
the ever higher abstractions available in programming
languages and in synthesis capabilities.

In the present specific context of scenario-based
programs, and in particular, as the execution is of-
ten driven by play-out rather than by running synthe-
sized programs, the scenarios of category (C) serve
multiple purposes: First, they enable underspecifica-
tion in scenarios of category (B), leaving the system
more options to choose from at run time. The cate-
gory (C) scenarios actively participate in the play-out,
and are consulted as guards and constraints during
event selection. Second, category (C) scenarios can
guide smart play-out (i.e., execution with lookahead)
or program synthesis so that the proper choices can be
made. Finally, when the category (B) scenarios define
the system’s behavior fully and deterministically, the

category (C) scenarios serve as a separate, nearly in-
dependent alternative specification of the properties
that the system should be tested against.

6.2 Inserting Defects

We made the following modifications to the specifica-
tions in our experiments:

1. We changed an obstacle controller scenario to
have an ”off-by-one” error - where when only one
car is passing in the narrow area, cars arriving
from the other direction are not signaled to stop.
When two or more cars occupy the narrow area,
the signal works correctly.

2. We removed the (often forgotten) environment as-
sumption that drivers obey the stop/go signal on
their dashboard.

3. We omitted the scenario that, as soon as the nar-
row area becomes free, allows the passing of cars
that were previously told to wait.

4. We introduced a copy&paste error in the sce-
nario describing the requirement that car colli-
sions must be avoided.

These modifications reflect commonly made mistakes
such as “off-by-one” errors, errors resulting from us-
ing copy&paste incorrectly, or forgetting to specify
important aspects of the system. The modifications in
our experiments also covered all three categories of
scenarios.

6.3 Systematic Analysis of Traces to
Identify Defects.

We used a prototype of our aforementioned trace-
processing tools and API to analyze traces induced
by our modified specifications. Initially, we created
a version of the specification that contained the first
three modifications and collected all traces leading
from the initial state of the system to a state violat-
ing the specification. This initial set of traces occu-
pied 78MB. It contained about 5000 traces of about
20 events each. The three modifications we picked all
represented defects in (A) or (B) kind scenarios.

Clearly one or few of these small traces could have
been analyzed manually using traditional techniques,
but in our initial experimentation we were able to exe-
cute the following partially automated analysis of the
entire set as follows. In the first batch of steps:

1. We extracted all traces that lead to a safety viola-
tion of the specification.

2. We created a list of all events that trigger a viola-
tion.

3. We (manually for now) observed in this list that
violations occur upon the event of a car reaching
the obstacle or the event of a car passing the ob-
stacle.

4. We used this observation to narrow our set
of traces to all those in which the event
carB1.obstacleReached is the cause of a
violation. (such choice can emanate from, say, a
customer complaint — that after certain actions
certain undesired conditions emerged). This
yielded 670 traces, all with the same violated sce-
nario, the one with the self-explanatory name of
CarReceivesAnswerBeforeReachingObstacle.

5. We checked a failed trace against this scenario and
saw that the above event occurred out of order and
the expected event (of reaching the obstacle) has
not arrived yet at that point.

6. We checked all scenarios which can emit this
event. This yielded (in this case) just a single sce-
nario. Finding the “off-by-one” bug in this small
scenario was then straightforward.

While some of these steps are similar to classical
debugging, one should note that some of the answers
apply to a multitude of test runs and not just to one,
providing a greater generality to the analysis and to
the proposed solution.

We then pursued a second batch of steps as fol-
lows:

1. We fixed the bug we have found above.

2. We collected new traces from the specification
now presumably containing only defects 2 and 3.

3. We verified that the first problem was indeed
fixed, i.e., the previously observed undesirable be-
havior of having cars reach the obstacle without
being signaled whether they should wait or may
pass was indeed gone. The events triggering a
safety violation now only included events of cars
that are trying to pass the obstacle.

4. Again, we narrowed down the set of traces under
investigations to those in which a particular event,
carB1.passingObstacle, triggers the violation.
This resulted in a set of 3640 traces.

5. We investigated which scenarios were violated,
and found 4200 violations of the scenario speci-
fying that car collisions must be avoided.

6. We inspected these violations and noticed that
carB1 can collide with two other cars, carA1
and carA2. Sometimes even with both at the
same time, thus triggering two violations with one
event.

7. We we went back to the set of traces under inves-
tigation and used our API to filter it some more.
We removed all traces that include carA2 to focus
on collisions between the other two cars.

8. We used the intersection feature of our API to find
the common behavior among all these remaining
traces and found the following:

env -> carA1.approachingObstacle()
carA1 -> obstacle.register()
env -> carB1.approachingObstacle()
carB1 -> obstacle.register()
env -> carA1.passingObstacle()
env -> carB1.passingObstacle()

and two kinds of complements of the intersection,
namely six traces containing

obstacle -> carA1.allowPassage()
// may pass

obstacle -> carB1.disallowPassage()
// must wait

and four traces containing

obstacle -> carB1.allowPassage()
obstacle -> carA1.disallowPassage()

This suggested that the cars simply ignored the
signals they were sent. Both cars tried to pass the
obstacle at the same time despite one car having
received a wait signal.

9. We examined the entire specification looking for
a specification that forbids events associated with
a car’s progression between getting events asso-
ciated with disallowing passage and events asso-
ciated with allowing passage. We could not find
any such scenarios (granted, one does not always
know exactly what one is looking for in such cases
as some of the desired effect may be only in-
directly implied from well-thought-out specifica-
tions). We concluded that a specification of the
assumption that cars obey the signals that are sent
to them was missing.

We were able to reach the same conclusion about the
root cause of the problem (cars ignore the signals
from the obstacle controller) using our API also with
different analysis steps, this time quantitative ones, as
follows:
1. We created a histogram of the number of oc-

currences of all pairs and triplets of consecutive
events in all the traces.

2. We observed that the triplet (and its analogue for
the other cars)

obstacle->carB1.disallowPassage()
env->carB1.obstacleReached()
env->carB1.passingObstacle()

occurred many times.
3. In a slightly different quantitative analysis, us-

ing our API to create three transformations of
each trace, each transformation only containing
the events involving one particular car, we could
show that each trace contained at least one offend-
ing triplet, i.e., at least one car ignored its wait
signal.

We then fixed the problem we just identified, i.e.,
we added (back) the assumption that cars obey the
signals, and proceeded with the partially-automated
analysis as follows:
1. We used the API to generate the state graph and

look for violations. This showed that there are
no safety violations, only liveness violations. The
specific property that was violated was that each
car eventually goes past the narrow area.

2. We collected a set of traces leading to the liveness
violation.

3. After several filtering operations similar to the
above, we observed that the last event re-
ceived by carB1 prior to entering a cycle
in which a car never goes past the narrow
area, is carB1.disallowPassage(), and that no
allowPassage() is sent to it after that event, de-
spite all cars that drive in the opposite direction
being conspicuously past the narrow area (e.g., the
location of carA1 is BehindObstacle).

In this experiment we showed that using multiple
traces instead of just one single example, can signifi-
cantly help the process of understanding of the cause
of a problem. Note that while the observed violations
were all in the requirements scenarios, (i.e., some
property encoded in a category (C) scenario did not
hold), the actual causes of the problems were else-
where, and trace analysis helped to understand and
pinpoint the causes, even though the problematic se-
quence of events may have occurred much earlier than
the actual violation. Even in cases in which entire sce-
narios where missing this approach worked well and
it works for both safety and liveness violations.

6.4 Defects in the Requirements

During this first experiment we noticed that all three
mutations of our specifications relied on the presence
of category (C) scenarios. The latter forced the de-
fective category (A) and (B) scenarios to cause viola-
tions. This leads to two questions:
1. How should one handle user reports of an is-

sue that does not cause a violation (e.g., because
the respective category (C) scenario encoding the
user’s expectation is missing)?

2. What happens if there is a defect in one of the
category (C) scenarios?

One answer to the first question is that the pro-
posed API needs to support the collection of traces
fulfilling arbitrary user-defined properties. Collecting
all traces from the initial state to a violating state is
a special case of an engineer wanting to inspect all
traces which lead from one specific state in which the
system is still known to be in a good state, to another
specific state, where the engineers know the target
state or paths between the two are undesirable. Our
API now includes support for such trace collection re-
quest. Extending this to sets of source states and sets
of target states, as defined by some properties is left
as future work.

The answer to the second question has two parts.
First, if the defective category (C) scenario is in-
deed violated by an otherwise valid trace, this can
be discovered immediately when examining the vio-
lated scenario upon encountering such a violation. In
scenario-based specifications, where program mod-
ules are usually short and refer to one sentence or a
short paragraph in the requirements as conceived by
stakeholders and engineers, it is often easy to notice
the error in the way a requirement is specified which
causes it to be unduly violated. This became apparent
in second, smaller-scale iteration of our experiment in
which we tried to apply our proposed methodology to
a mutated version of our example specification which
contained the fourth defect of those listed in Sect. 6.2.
Throughout our experiments, when intended and un-
intended defects caused the defective scenario itself to
manifest a violation, discovering and fixing the defect
was straightforward.

In order to be able to discover problems in cate-
gory (C) scenarios which are not manifested by their
violation, we propose a somewhat different approach.
For each category (C) scenario, one should prepare a
setup that violates it. For example, such a setup can
be a single test scenario that requests a sequence of
events that should violate the property at hand. As
part of initial testing (perhaps immediately when the
category (C) scenario for the property is first written)
any other existing scenarios which may prevent the
violation should be disabled or removed and the test
scenario be executed alongside with the tested prop-
erty. Then one should confirm that either the property
is violated, or that the property scenario causes the
test scenario to be stuck, or to terminate prematurely.

Thus, the main strength of the trace analysis ap-
proach described in Section 5 lies in helping to iden-
tify defects in which the cause lies at a different point
in time than the observed undesirable behavior.

6.5 Support for Demonstrating
Relevant Properties

The debugging tools and methodology presented
above, can also be used for a different purpose:
demonstrating desired properties in specifications and
sets of traces. Consider for example a request
by a reviewer of the system to see a demonstra-
tion ‘proving’ that the obstacle controller sends a
disallowPassage signal to approaching cars when-
ever there are other cars occupying the narrow area in
the opposite direction. We assume also that this has
not been and cannot be added as a separate category
(C) scenario, and must be implied by other, existing
scenarios. Note also that a straightforward formal ver-
ification that this property holds in the specification
may even be misleading, e.g., if due to other modeling
errors it turns out that cars rarely, or even never, arrive
at the obstacle from opposite directions at the same
time. Of course, a single test run would be a nice, but
insufficient demonstration. This is what often hap-
pens in real system demos. However, a more powerful
demonstration would be to show statistics indicating
that in an extensive collection of runs, triples like
env->carA1.passingObstacle()
obstacle->carB1.disallowPassage()
env->carB1.obstacleReached()
occurred thousands of times, repeatedly, and in dis-
tinct traces. This feature of the entire approach also
serves as a reminder that a particular trace or set
thereof may possess multiple relevant properties, and
engineers may be interested in different properties at
different times. E.g., during our analysis of collisions
in pursuing the second defect, the automated trace
analysis informed us, without us asking explicitly,
that the obstacle sent the required signals correctly in
all possible runs.

7 DISCUSSION AND FUTURE
WORK

We have presented our direction towards a systematic
approach for management, summarization, analysis
and querying of large sets of large execution traces of
SBP models, and have shown preliminary results how
such tools can accelerate causal analysis, debugging
and maintenance.

A more systematic evaluation of the advantages of
such tools over manual techniques can motivate and
guide the particular areas that should be further de-
veloped.

For example, the approach can be enhanced via

richer queries on traces, scenarios and system states.
E.g., “what are the scenarios which request other en-
abled events when event E1 was selected (in traces
in the current set), and were these event requests ever
granted, or did the scenarios transition out of that state
due to other events that occurred?”. Also, queries re-
garding strategies may help engineers: some undesir-
able behavior may be avoidable by the system what it
follows a certain strategy (if it has enough degrees of
freedom to do so). In such cases engineers may want
to know whether some behavior is avoidable (i.e., if a
variant of the strategy exists), and if it is, under what
circumstances this will be possible.

In particular we would be interested in causality
queries, such as “given a violation, find the sequence
of events that directly caused the triggering of the last
event”. In other words, going backwards, for each
triggered system event, what are all the scenarios that
requested it at that state (system cut); what was the
preceding event in each of these scenarios; and then,
repeat the process for each of these events. In fact,
this should be augmented with researching the events
that were blocked in those states, and how the scenar-
ios that blocked them have reached those particular
states. While this chain of analysis may be large, re-
call that it filters out all the events that are not in this
causal chain, and are merely the result of parallel pro-
cesses.

One can automate certain aspects of liveness-
property analysis in traces (when comprehensive for-
mal verification is not possible), based on the fact that
scenarios distinguish events that must happen from
those that ‘just’ may happen, at a given state in a sce-
nario. Hence the specification and traces can guide
the discovery of situations where scenarios wait for an
extended period of time for events that were marked
as must happen, as well as the causality chains which
may have been broken.

Another area of intriguing research opportunity is
automating (or, at least, methodologically prescrib-
ing) the steps in the method that presently depend on
human decision and intuition.

The enrichment of the log with object data can
help analyze complex problems. For example, it
seems that only a few additional details, like time and
certain car properties, and a small amount of domain
knowledge (to be captured as additional assumption
scenarios), should be needed in further automating
the analysis of near-collisions described in Section 1.
We would expect the computer to be be able to reach
complex observations like: (i) “Car C2 was actually
an ambulance on an emergency call with a siren and
lights on” (hence its driving aggressively may be ac-
ceptable); (ii) “the event of car C1 pulling over to the

side to make way for C2 is missing”; and (iii) “C1
is not at fault as the ambulance has just turned into
the street in which C1 was driving and there was not
enough time for C1 to pull over before the bicycle
crossed its path.”.

Another dimension in which this work should be
extended is to create generalized behavioral sum-
maries which transcend specification scenarios and
individual trace summaries. E.g. we would like to
find a formal, concise representation for SE knowl-
edge as contained in natural language sentences like:
“presently, always, (as opposed to ‘it happened once’)
when the user presses the green button the buzzer
sounds, but instead, the green light should go on”,
or “the users could not complete their desired action
of pressing buttons B1, B2, B3, B4 in this order, be-
cause, always after they pressed button B2, button
B3 was disabled”. Such formalization capabilities
would enable deeper analysis and perhaps streamline
the automation and complex development tasks such
as feature analysis, problem determination, and pro-
fessional interaction with customers.

ACKNOWLEDGEMENTS

This work has been funded in part by grants
from the German-Israeli Foundation for Scientific Re-
search and Development (GIF), from the Minerva
foundation, and from the Israel Science Foundation
(ISF).

REFERENCES

Bertero, C., Roy, M., Sauvanaud, C., and Trédan, G. (2017).
Experience Report: Log Mining using Natural Lan-
guage Processing and Application to Anomaly Detec-
tion. In 28th International Symposium on Software
Reliability Engineering (ISSRE).

Braun, E., Amyot, D., and Lethbridge, T. (2015). Generat-
ing Software Documentation in Use Case Maps from
Filtered Execution Traces. In International SDL Fo-
rum, pages 177–192. Springer.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
(2003). Counterexample-guided abstraction refine-
ment for symbolic model checking. Journal of the
ACM (JACM), 50(5):752–794.

Damm, W. and Harel, D. (2001). LSCs: Breathing life into
message sequence charts. In Formal Methods in Sys-
tem Design, volume 19, pages 45–80.

Greenyer, J., Gritzner, D., Gutjahr, T., Duente, T., Dulle,
S., Deppe, F.-D., Glade, N., Hilbich, M., Koenig, F.,
Luennemann, J., Prenner, N., Raetz, K., Schnelle, T.,
Singer, M., Tempelmeier, N., and Voges, R. (2015).

Scenarios@run.time – Distributed Execution of Spec-
ifications on IoT-Connected Robots. In 10th Int. Work-
shop on Models@Run.Time (MRT), co-located with
MODELS 2015, CEUR Workshop Proceedings.

Greenyer, J., Gritzner, D., Katz, G., and Marron, A. (2016).
Scenario-Based Modeling and Synthesis for Reactive
Systems with Dynamic System Structure in Scenari-
oTools. In Proceedings of the MoDELS 2016 Demo
and Poster Sessions, co-located with ACM/IEEE 19th
International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS). CEUR.

Gritzner, D. and Greenyer, J. (2017). Controller Synthe-
sis and PCL Code Generation from Scenario-based
GR(1) Robot Specifications. In Proceedings of the
4th Workshop on Model-Driven Robot Software En-
gineering (MORSE 2017), co-located with Software
Technologies: Applications and Foundations (STAF).

Hamou-Lhadj, A. and Lethbridge, T. (2006). Summarizing
the content of large traces to facilitate the understand-
ing of the behaviour of a software system. In 14th
IEEE International Conference on Program Compre-
hension (ICPC), pages 181–190. IEEE.

Harel, D., Katz, G., Marelly, R., and Marron, A. (2016).
An Initial Wise Development Environment for Behav-
ioral Models. In Proc. 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 600–612.

Harel, D., Katz, G., Marron, A., and Weiss, G. (2014). Non-
Intrusive Repair of Safety and Liveness Violations in
Reactive Programs. Transactions on Computational
Collective Intelligence (TCCI), 16:1–33.

Harel, D. and Marelly, R. (2003). Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer.

Harel, D., Marron, A., and Weiss, G. (2012). Behavioral
Programming. Comm. of the ACM, 55(7).

Marron, A. (2017). A Reactive Specification Formalism for
Enhancing System Development, Analysis and Adap-
tivity. In 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design
(MEMCODE).

Noda, K., Kobayashi, T., Toda, T., and Atsumi, N.
(2017). Identifying Core Objects for Trace Summa-
rization Using Reference Relations and Access Anal-
ysis. In Computer Software and Applications Confer-
ence (COMPSAC), 2017 IEEE 41st Annual. IEEE.

Weimer, W., Forrest, S., Le Goues, C., and Nguyen,
T. (2010). Automatic program repair with evolu-
tionary computation. Communications of the ACM,
53(5):109–116.

